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a b s t r a c t 

An object can be described as the combination of primary visual attributes. Disentangling such under- 

lying primitives is the long-term objective of representation learning. It is observed that categories have 

natural hierarchical characteristics, i.e., any two objects can share some common primitives at a partic- 

ular category level while possess unique traits at another. However, previous works usually operate in 

a flat manner (i.e., at a particular level) to disentangle the representations of objects. Even though they 

may obtain the primitives to constitute objects as the categories at that level, their results are obvi- 

ously not efficient and complete. In this paper, we propose a Hierarchical Disentangling Network (HDN) 

to exploit the rich hierarchical characteristics among categories to divide the disentangling process in a 

coarse-to-fine manner (i.e., level-wise), such that each level only focuses on learning the specific rep- 

resentations and finally the common and unique representations at all levels jointly constitute the raw 

object. Specifically, HDN is designed based on an encoder-decoder architecture. To simultaneously ensure 

the level-wise disentanglement and interpretability of the encoded representations, a novel hierarchical 

Generative Adversarial Network (GAN) is introduced. Quantitative and qualitative evaluations on popular 

object datasets validate the effectiveness of our method. 

© 2023 Published by Elsevier Ltd. 
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. Introduction 

Representation learning is a basic and hot topic in machine 

earning and computer vision community, which has achieved sig- 

ificant progress in the recent years on different tasks such as 

ecognition [1] , detection [2–4] and generation [5] , benefiting from 

he rapid development of representation learning by deep neural 

etworks. Considering the strong capacity of deep neural networks, 

n this paper, we mainly focus on the deep representation learning 

ramework. 

Despite great success the deep representations have achieved, 

wo important problems are still unresolved or less considered, i.e., 

he interpretability and the disentanglement of the learned rep- 

esentations. In the past decade, various works have been devel- 

ped to reveal the black box of deep learning [6–11] and move us 

loser to the goal of disentangling the variations within data [12–

8] . Even though they have brought great insights to us, they still 
∗ Corresponding author at: Key Laboratory of Intelligent Information Processing of 
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ave some limitations. For instance, Chen et al. [18] , Xie et al. [19] ,

hao et al. [20] learn to disentangle variation factors within each 

ategory using generative models, instead of investigating the sim- 

larities and differences among categories, leading to poor discrim- 

nability. Therefore, the learned representations would not well 

onform to human perception. Though [16,17] try to obtain the 

omain-invariant and domain-specific knowledge, they can only 

andle two categories at a time, which is not that efficient. Be- 

ides, previous works mainly learn representation of objects in a 

at manner, i.e., in a specific categorical level, which may not be 

exible and complete. In this paper, we attempt to learn disentan- 

led representations in a more natural and efficient manner. 

Let us recall how humans understand an object. Generally 

peaking, an object is usually described as the combination of 

any semantic attributes, e.g., a Husky is a quadruped furry an- 

mal with bulged frontal bone and representative gray-white tex- 

ure. Hundreds of thousands of objects in the world can be clus- 

ered and recognized by humans just because we can figure out 

he common and unique attributes of an object compared to the 

thers. For example, one person who has never seen the Husky 

an recognize it as a dog in terms of its four legs, furry and bulged

rontal bone features, while an animal expert may regard it as a 

https://doi.org/10.1016/j.patcog.2023.109539
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2023.109539&domain=pdf
mailto:xlchen@ict.ac.cn
https://doi.org/10.1016/j.patcog.2023.109539
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Fig. 1. Illustrations of (a) a hierarchical structure and (b) extracting the hierarchical features that constitute an object image. In (b), the common features that only contain 

the information of its being the root category are first extracted. By tracing from the root to leaf, the unique features that contain additional information of its being the 

finer-grained category are further extracted. The information encoded at each level is the semantic attributes A i for describing the object in that granularity. 
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usky by further observing its unique gray-white double coat. Both 

f them are right since categories have natural hierarchical struc- 

ure and one can understand the object at any level. 

As shown in Fig. 1 (a), given four leaf-level categories, they are 

rganized in a three-level hierarchical structure, considering the 

ommon and different semantics (e.g., visual attributes) they have. 

ach child category (e.g., the Husky ) in the hierarchy is a special 

ase of its parent category (i.e., the dog ), since it inherits all at- 

ributes from its parent category and has extra variations that are 

ot owned by its parent category. From another perspective, each 

arent category is the abstraction of all its child categories, con- 

idering it contains basic attributes that are present in all its child 

ategories. Then we come back to the task of object representation 

earning. It aims to learn the representation encoding useful infor- 

ation that can be applied to other tasks (e.g. building classifiers 

nd predictors) [21] . Taking the hierarchical nature of categories 

nto account, if we only learn the representations of an object in 

 flat manner at a specific category-level as most previous works 

o, it will not be scalable and comprehensive for the machine to 

ccomplish various tasks in the real world, such as the open world 

nseen object understanding, as shown in the experiments. 

Our work aims to exploit such natural hierarchical character- 

stics among categories to divide the representation learning in a 

oarse-to-fine manner (i.e., level-wise), such that each level only 

ocuses on learning that granularity of representation. For instance, 

iven an object image in Fig. 1 (b), it tangles the information of 

eing an animal , a dog and a Husky . To achieve the objective of

ierarchical disentangling and simultaneously interpreting the re- 

ults so that humans can understand, we propose the Hierarchi- 

al Disentangling Network (HDN), which draws lessons from hi- 

rarchical classification and the recent proposed conditional gen- 

rative adversarial nets (cGANs) [22] . Specifically, we first extract 

he features that only contain the information of being the animal 

rom the image. By tracing from the root to leaf level, more and 

omplementary information is extracted until we can recognize its 

elonging categories at all hierarchical levels. Given these disen- 

angled visual primitives, they can be recombined from different 

bjects as conditions and then visualized in the image space (e.g., 

eatures of a Siamese being the cat plus features of a Husky being 

ifferent from the Samoyed should generate a Husky-like cat) via a 

onditional generative model. In the image space, hierarchical clas- 

ification loss is adopted to constrain the uniqueness of each level, 
2 
.e., minimizing the cross entropy between the recombined features 

t different levels and corresponding semantic changes of the gen- 

rated images. 

By doing so, the disentangled representations of HDN are ex- 

ected to find wide and promising applications. For example, one 

an change the semantics of a source object to those of a target at 

 specific category level while keeping information of other levels 

nchanged, e.g., the semantic controlled image-to-image transla- 

ion in the experiments. Besides, it would help for the hierarchical 

mage retrieval task using different levels of the disentangled rep- 

esentations, as shown in a case of attributes retrieval in our ex- 

eriments. Apart from these, extensive experiments are conducted 

n several popular object datasets to validate the disentangling ef- 

ectiveness of our method. 

We summarize the main contributions of this paper in the fol- 

owing: 

• We address the object representation learning problem from 

the generative perspective, i.e. what are the visual primi- 

tives constituting an object. Different from existing works, this 

manuscript focuses on a more natural and complete under- 

standing of objects, i.e. dissect the object at different semantic 

levels inspired by the knowledge of taxonomy. By doing so, we 

obtain more general level-wise representations of objects which 

can be applied to several discriminative and generative down- 

stream tasks. 
• We propose a two-branch level-wise disentangle framework, 

which disentangles the constitutes of objects into basic com- 

monality and hierarchical individuality parts. In the individual- 

ity branch, the novel semantic combination scheme is leveraged 

to ensure disentanglement of representations at different levels. 
• We propose a hierarchical generative adversarial network to su- 

pervise the representation learning. The main difference from 

previous conditional GAN-based methods is that the semantic 

conditional inputs are consisted of multiple coarse-to-fine parts, 

each of which captures a local distribution of the whole data 

manifold. To this end, a hierarchical auxiliary classifier is elab- 

orately designed accompanying with the discriminator. 
• We conduct extensive experiments consider both generative 

and discriminative evaluations of the learned general repre- 

sentations at different semantic levels. Specifically, we con- 

duct evaluations of object recognition including general, open- 
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world and cross domain scenarios, semantic retrieval and at- 

tributes/categories manipulation/translation in terms of both 

quantitative and qualitative metrics. 

. Related work 

Our goal is to learn level-wise disentangled and interpretable 

epresentations for a specific object with deep networks, under the 

uidance of hierarchical prior. Therefore, our work is mainly re- 

ated to disentangling deep representations, network interpretabil- 

ty and hierarchy-regularized learning. 

Disentangling deep representations The goal of disentangling 

epresentation learning is to discover factors of variation within 

ata [21] . Recent years have witnessed a substantial interest in 

uch research area [23] , including the works based on deep learn- 

ng [12–18,24–26] . Rifai et al. [14] is probably the earliest to learn 

isentangled representations using deep networks for the task of 

motion recognition. Reed et al. [12] is based on a higher-order 

oltzmann machine and regards each variation factor of the man- 

fold as its sub-manifold. Recently, Mathieu et al. [13] , Chen et al. 

18] , Alharbi and Wonka [27] , Deng et al. [28] , Shen et al. [29] ,

u et al. [30] , Wadhwani and Awate [31] leverage the generative 

dversarial nets (GAN) to learn factors of variations to control the 

emantic of image synthesis. The cross-domain translation meth- 

ds [16,17,32] learn the domain-specific representations to realize 

omain transfer. 

However, these works ignore the natural and inherent hierar- 

hical relationships among categories, with which we can conduct 

he disentangling in a coarse-to-fine manner such that each level 

nly focuses on learning the specific representations. In addition, 

ost existing works focus on dimension-wise disentanglement for 

ndependent factors such as pose, lighting, font width and so on, 

sing simple datasets. As for complex real-world images, many fac- 

ors can be correlated with each other and as a whole to represent 

 conceptual variation, where dimension-wise disentanglement has 

ot been well studied. To address these issues, Tong et al. [25] , 

aneko et al. [26] propose to learn the multivariant variables for 

odeling data variations using multi-dimensional vectors to rep- 

esent difficult conceptual variations. To be specific, they progres- 

ively factorize such complicated variables into several mutually 

xclusive groups with narrowed variations, leveraging the hierar- 

hical inclusion relationship. Each group at lower level focuses on 

 particular finer-grained conceptual variation. 

Tong et al. [25] , Kaneko et al. [26] possess similarities with 

urs on the disentangling manner, i.e., level-wise disentanglement 

earning. Nevertheless, they have substantial differences from ours. 

pecifically, Tong et al. [25] is a discriminative model to learn 

emantic, non-semantic and discriminative features capturing the 

ne-grained difference among categories for zero-shot learning 

ask, and [26] is a generative model which aims to learn the factor- 

ontrolled generation progress like [18,27,28] . In other words, these 

wo works focus on analyzing data variations from the perspec- 

ive of the whole data manifold by dividing the complex variations 

t high level into more controllable and finer-grained ones at low 

evels for specific tasks , and thus the semantic of representation at 

igh level contain that at low level. In contrast, ours is a genera- 

ive model and task-agnostic , aiming at single object understanding 

n the human-like manner by dividing the constitution of objects 

nto multiple complementary semantic parts, and thus the seman- 

ics of representation at high level are the subset of that at low 

evel. Besides, the disentangled features of our method are more 

eneral and can serve for downstream tasks, as we validate in the 

xperimental section. 

Network interpretability Network interpretability aims to learn 

ow the network works via visualizing it from the perspective 

hat humans can understand. Related methods can be divided into 
3

wo groups according to whether the visualization is involved in 

he network during training, i.e., the off-line methods and online 

ethods. The off-line methods make attempts to visualize patterns 

n image space that activate each convolutional filter [6–8,33,34] , 

nterpret the area in an image that is responsible for the network 

rediction [9,10,35–39] , or manipulate the attributes of generated 

mage by disentangling the latent space [29] . While such methods 

an explain what has already been learned by the model, they can- 

ot improve the model interpretability in return. Instead, the on- 

ine works propose to directly learn interpretable representations 

uring training [11,40,41] . However, these methods mainly focus on 

guring out the running mechanism of networks while paying less 

ttention to dissect variations among categories, which cannot en- 

ure the models really understand their inputs. 

Hierarchy-regularized learning Semantic hierarchies have been 

xplored on object classification task for accelerating recogni- 

ion [42,43] , obtaining a sequence of predictions [44,45] , making 

se of category relation graphs [46,47] , and improving recogni- 

ion performance through additional supervision [25,48–53] . While 

hese discriminative classification works have achieved their ex- 

ected goals, they usually lack interpretability. To address such is- 

ues, Xie et al. [19] , Zhao et al. [20] propose to use generative

odels to disentangle the factors from low-level representations 

o high-level ones that can construct a specific object. Singh et al. 

54] uses an unsupervised generative framework to hierarchically 

isentangle the background, object shape and appearance from an 

mage, and [26] attempts to capture the granularity-controlled con- 

itions for image synthesis with decision tree latent controller. 

owever, they either deal with each category in isolation or ignore 

he discriminability of learned features, and thus cannot accurately 

isentangle the differences and similarities among categories. 

Our work lies in the intersection of above three research ar- 

as, and jointly exploits their advantages of level-wise disentan- 

ling variant and invariant factors within data in an efficient 

oarse-to-fine manner, as well as interprets them in the human- 

nderstandable image space via the generative learning frame- 

ork. 

. Hierarchical representation learning 

.1. Problem formulation 

Supposing that a category hierarchy is given in the form shown 

n Fig. 1 (a), we use l = 1 , . . . , L to denote the level of hierarchy ( L

or the leaf level and 1 for the root level), K l to denote the number

f nodes at level l, n k 
l 

to denote the k -th node at level l, and C k 
l 

o denote the number of children of n k 
l 
. As illustrated in Fig. 1 (b),

iven an original object image denoted as I o , our goal is to extract 

he feature F l at the l-th level. 

Generally speaking, an object O can be described as the combi- 

ation of a set of visual attributes: 

 = { A 1 , . . . , A i } ︸ ︷︷ ︸ 
l e v el =1 

∪ { A i +1 , . . . , A j } 
︸ ︷︷ ︸ 

l e v el =2 …

∪ { A j+1 , . . . , A m 

} 

︸ ︷︷ ︸ 
l e v el = L 

∪ � (1) 

here � represents currently undefined attributes existing on O . 

s we have discussed, humans classify O at a particular cate- 

ory level according to a subset of the whole attribute set in 

q. (1) . Take the object in Fig. 1 (b) for example, it can be regarded

s an animal since it contains the attribute subset { A 1 , . . . , A i } , 
nd be classified to a dog in terms of the attribute subset 

 A 1 , . . . , A i , A i +1 , . . . , A j } present in it. Therefore, the disentangled 

eature F l for our objectives in Fig. 1 (b) should encode the in- 

ormation of the attribute subset formulated in Eq. (1) . Moreover, 
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Fig. 2. An illustration of the framework of our method. Assume images A, B and C belong to a three-level hierarchy in Fig. 1 (not limited by three, one can add more levels), 

the root-level common feature of their being the root category and the unique features at non-root levels that can further distinguish them as finer-grained categories are 

extracted by the upper and bottom convolutional branches, respectively. To ensure semantically disentangling and human friendly interpretability of the unique features, 

different levels of them from the same or different objects are randomly recombined, and then reconstructed via feature aggregation (Adaptive Instance Normalization 

(AdaIN)) and conditional generation in the image space, where adversarial loss and hierarchical classification loss are elaborately designed. 
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ue to the hierarchical correlations (i.e., the inherited relationship) 

mong categories at different hierarchical levels, obviously the sub- 

et { A 1 , . . . , A i , A i +1 , . . . , A j } includes { A 1 , . . . , A i } , naturally leading

o the disentangled F l−1 being the proper subset of F l . In other 

ords, at non-root levels, only the unique feature compared to its 

arent needs to be learned. With such hierarchical complementary 

haracteristics, the unique features at different levels should reflect 

ifferent aspects of the object appearance. If we randomly recom- 

ine each level of F l from the same or different objects and re- 

onstruct them in the image space, the appearance of generations 

ould be changed by the semantic information encoded in F l , e.g., 

 generated image combines the shape of a cat and the texture of 

 Husky. 

Taking these into consideration, we design the Hierarchical Dis- 

ntangling Network (HDN) based on the autoencoder architecture 

n Fig. 2 . The encoder E dissects the hierarchical representations 

iven a semantic hierarchical prior. Different levels of unique fea- 

ures from the same (or different) objects are recombined and ag- 

regated with the root-level feature as the conditions for the de- 

oder G to reconstruct images. By doing so, the semantics of disen- 

angled features at different levels can be visualized in the image 

pace. During training, to ensure the consistency between the ap- 

earance changes of generations and the semantics encoded in re- 

ombined features from corresponding levels, the discriminator D 

nd the hierarchical classifiers H (they share the frontal backbone 

rchitecture except the output layers) are designed. 

.2. Hierarchical representation extraction 

In this subsection, we introduce the detailed extraction process 

f F l . Since F l−1 is the proper subset of F l , once F l−1 is obtained, 

nly the difference R l ( 1 < l ≤ L ) between F l and F l−1 needs to be

ncoded. Considering such information, we devise a top-down rep- 

esentation extraction scheme. 

Given F l−1 and R l , we aggregate them together to obtain the 

hole representation in the l-th level. Such procedure can be for- 

ulated as: 

 l = F l−1 � R l (2) 

here � means information aggregation. Therefore, for implemen- 

ation of hierarchical disentanglement, only the common feature F 
1 

4 
t the root level and the unique ones { R l } L l=2 
at deeper levels are

xtracted in this paper. 

To ensure the semantics of these features and interpret them 

o humans, the decoder reconstructs them in the image space. The 

emantics of F 1 are shared among all its offspring, which can be 

egarded as the invariant basic content of the object, while those 

f { R l } L l=2 
are unique for different levels which play the role of the 

ariant styles of the object. Therefore, F 1 and { R l } L l=2 
are processed 

n the upper and bottom branches respectively to make them play 

ifferent roles during the reconstruction, as shown in Fig. 2 . 

.3. Constraints for the learning process 

The basic constraints on hierarchical disentanglement are mak- 

ng features at different levels perform their own duties. For an 

bject O , the encoded F 1 and { R l } L l=2 
should be complementary, 

s the constraints of F l being the proper subset of F l+1 . F 1 should 

ncode just right information for describing its being the root cat- 

gory. Progressively involving R l , one can distinguish it from other 

ategories at the l-th level. 

Apart from the semantic disentanglement, visualization of fea- 

ures in the image space such that we can figure out what has 

een encoded would be more human friendly. To kill two birds 

ith one stone, we turn to the popular conditional generative ad- 

ersarial nets (cGANs) [22] which can control generated images 

ased on different semantic condition inputs. To be more specific, 

ur HDN leverages the disentangled features F 1 and { R l } L l=2 
to con- 

rol the variations of reconstructed images at different category 

evels. In return, by conducting loss functions on generated images, 

he semantics of the input conditions (i.e., F 1 and { R l } L l=2 
) can be 

isentangled. 

To ensure F 1 , { R l } L l=2 
are well disentangled and complementary, 

e assume that the disentangled result at any level of one object 

an be exchanged with the one at the same level of another ob- 

ect, and such exchanged features at that level would be reflected 

n the appearance change of the reconstructed image (e.g. the leaf- 

evel feature of a Siamese is replaced by that of a Husky may gen- 

rate a Husky-like cat). Based on this idea, we propose to randomly 

ecombine features at each level from two different objects and 

ontrol the generated images through these combined features, as 

hown in Fig. 2 . Specifically, given F A 1 , { R 

A 
l } L l=2 

and F B 1 , { R 

B 
l } L l=2 

dis-
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1 The source codes will be released to the public. 
2 It is noted that the focus of this paper is to interpret the hierarchical struc- 

ture within data. Therefore, we heuristically construct hierarchical structures based 

on two principles. First, it meets with the human perception, i.e., similar images 

should belong to one cluster. Second, it can be easily evaluated in the experiments 

based on the hierarchical descriptions in Eq. (1) , i.e., we can clearly observe and de- 

scribe the differences between levels in the hierarchy for an object image. One can 

also automatically obtain reasonable hierarchical annotations using machine learn- 

ing technologies such as unsupervised clustering as Goo et al. [52] does. 
ntangled from objects O A and O B , we obtain the newly combined 

eatures F 
′ 
1 and { R 

′ 
l } L l=2 

. For each level, R 

′ 
l ( F 

′ 
1 if l = 1 ) comes from

ither O A or O B . The newly combined features are aggregated to- 

ether as the inputs for the decoder G to generate new object im- 

ges I g . Such images should satisfy the following loss functions: 

– Hierarchical classification loss . For level l, I g should be clas- 

sified to the category that R 

′ 
l reflects (note that the root level 

F 
′ 
1 only contains one category), defined as: 

J cls = E I g ∼p(G ) 

⎡ 

⎣ −
L ∑ 

l=2 

C k 
l−1 ∑ 

c=1 

y c l log( H( I g ) c l ) 

⎤ 

⎦ (3) 

where J cls is a cross-entropy loss among local brother cate- 

gories at each level that have a common parent node k , such 

as the dashed rectangled categories in the bottom right cor- 

ner of Fig. 2 . p(G ) denotes distribution of generated images 

G ( F 
′ 
1 , { R 

′ 
l } L l=2 

) . H( I g ) c 
l 

is probabilistic prediction on the c-th

local category, and y c 
l 

is the ground truth local label of the 

generated object at the l-th level. 

Please note that we only focus on the local brother cate- 

gories (i.e. the ones belonging to the same parent category) 

instead of all categories at that level. It makes the disen- 

tanglement more flexible. On one hand, the classification at 

each level can thus only focus on the unique features that 

are just discriminative among those local brother categories. 

On the other hand, the duties of different levels can be well 

disentangled, since if the semantic information encoded in 

different levels is tangled, after the random combination and 

image reconstruction, the hierarchical classifiers would be 

quite confused. 

– Adversarial loss . We employ GANs to match the distribution 

of reconstructed images to the real data distribution. Specif- 

ically, the LS-GAN [55] loss is adopted in light of its stable 

training process, defined as: 

J GAN = E I g ∼p(G ) [(1 − D ( I g )) 2 ] (4) 

– Image reconstruction loss . As for F 
′ 
1 and { R 

′ 
l } L l=2 

from one 

same object, we should be able to reconstruct it as close to 

the input as possible. 

J I recon = E I r ∼p ′ (G ) [ || I r − I o || 1 ] (5) 

where p ′ (G ) is the distribution of generations taking 

F 
′ 
1 , { R 

′ 
l } L l=2 

from the same objects as inputs. 

– Feature reconstruction loss . Apart from the image recon- 

struction loss, the feature reconstruction loss is added to 

HDN to stabilize the training process. 

J F,R 
recon = E 

( F 
′ 
1 , { R ′ l } L l=2 

) ∼p(E) 
[ || E(G ( F 

′ 
1 , { R 

′ 
l } L l=2 )) − ( F 

′ 
1 , { R 

′ 
l } L l=2 ) || 1 ]

(6) 

where p(E) is the distribution of encoded hierarchical fea- 

tures E( I o ) . 

Now we combine the four loss functions defined in Eqs. (3) –(6) 

nto one comprehensive loss function for supervising the training 

f the proposed method: 

(E, G ) = J cls + J GAN + αJ I recon + βJ F,R 
recon (7) 

here α and β are the hyper-parameters to balance the weights 

f the four terms. 

As for the update of the discriminator D and hierarchical classi- 

ers H, they are optimized by the following loss: 

(D, H) = 

⎛ 

⎝ E I o ∼p(data ) 

⎡ 

⎣ −
L ∑ 

l=2 

C k 
l−1 ∑ 

c=1 

y c l log( H( I o ) c l ) 

⎤ 

⎦ 

⎞ 

⎠ 
5 
+ (E I o ∼p(data ) [(1 − D ( I o )) 2 ] 

+ E I g ∼p(G ) [(D ( I g )) 2 ]) (8) 

.4. Implementation details 

Our HDN is implemented on Pytorch platform. 1 Design of 

he backbone follows recent proposed image generation [56] and 

mage-to-image translation works [17] . Images are resized to 

28 × 128 resolution for all datasets except Fashion-MNIST which 

s resized to 28 × 28. 

For aggregation of the common and unique features, i.e., F 
′ 
1 and 

 R 

′ 
l } L l=2 

, we equip the residual blocks with the Adaptive Instance 

ormalization (AdaIN) [57] , the parameters of which are dynami- 

ally generated by a multi-layer perception (MLP) from the disen- 

angled unique features. To be specific, the recombined { R 

′ 
l } L l=2 

are 

oncatenated first, and then aggregated with F 
′ 
1 by: 

daIN( F 
′ 
1 , γ , λ) = γ

(
F 

′ 
1 − μ( F 

′ 
1 ) 

σ ( F 
′ 
1 ) 

)
+ λ (9) 

here μ and σ are channel-wise mean and standard deviation, 

and λ are generated by the MLP from the concatenated unique 

eatures. No normalization is used in the bottom encoder branch. 

e adopt ReLU activation in the encoder-decoder and Leaky ReLU 

ith slope 0.2 in the discriminator and classifier. Multi-scale dis- 

riminators with 3 scales (single scale for Fashion-MNIST due to its 

oo small resolution) are used to ensure both realistic details and 

lobal structure. The last layer of the decoder is equipped with a 

anh activation to normalize the values of generated images to the 

ange of [ −1 , 1] . More network details are given in the supplemen-

ary material. 

During training, we use the Adam optimizer with β1 = 0 . 5 , 

2 = 0 . 999 , and initial learning rate of 0.0 0 01. We train HDN on

ll datasets for 300 K iterations and half decay the learning rate 

very 100 K iterations. We set batch size to 16. The loss weights 

and β in Eq. (7) are set as 10 and 1 respectively, following the 

ettings of Huang et al. [17] . Random mirroring is applied during 

raining. 

. Model disentangling analysis 

Datasets We conduct experiments on hierarchical annotated 

ata from four datasets, typical examples are shown in Figs. 3 and 

 . 2 The first is CelebA dataset [58] . It provides more than 200 K

ace images and 40 attribute annotations. Following the official 

rain/test splits, we define a four-level hierarchical structure which 

as explicit attribute difference between any two levels. Specifi- 

ally, all faces (root category) are first divided into two categories 

ased on gender. Such initial categories are further classified ac- 

ording to the smile expression and hair color at the next two lev- 

ls. With such ground-truth hierarchical annotations, we can vali- 

ate our method more easily. 

The second dataset named Fashion-MNIST [59] is proposed as 

 direct drop-in replacement of the original MNIST dataset for 

enchmarking machine learning algorithms. It shares the same 

rain/test split with MNIST. Since such dataset does not provide any 
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Fig. 3. Typical samples of hierarchical data on CelebA (a) and CADCars (b). Images within a purple rectangular box are some instances of a leaf-level category. Categories 

within a green rectangular box belong to one common super-category. The super-categories within a red rectangular box share one common ancestor. (For interpretation of 

the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Typical samples of hierarchical data on Fashion-MNIST (a) and ShapeNet (b). Images within a purple rectangular box are some instances of a leaf-level category. Cat- 

egories within a green rectangular box belong to one common super-category. The super-categories within a red rectangular box share one common ancestor. On ShapeNet, 

categories within one purple rectangular box can be further divided into four child categories based on pose variations. Therefore, one hierarchy named Shape-C (Furni- 

ture → Common Categories → Fine-grained Categories) and another one named ShapeNet-P (Furniture → Fine-grained Categories → Pose Variations) are defined. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

6 
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Fig. 5. Semantic translation results of the source images controlled by hierarchically disentangled features of the targets on CelebA. Different columns denote results of 

using F 1 , { R l } L l=2 
or their combinations disentangled from the target images to replace the corresponding levels of the sources ( + and 

∑ 

mean which levels participate in 

the exchange, rather than the numerical summation). Ground truths of R 2 , R 3 , R 4 are gender, smile and hair color variations, respectively. 
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ierarchical structure, we cluster T-shirt, coat, pullover as one su- 

er category, and trouser, dress as another super one to construct 

 three-level hierarchical structure (root is fashion) according to 

heir appearance similarity. 

The other two datasets are 3D data, i.e., CADCars [60] and 

hapeNet [61] . CADCars contains 183 3D Car models, and ShapeNet 

s constitutive of 51,300 3D models covering 55 common and 

05 finer-grained categories. Using their provided tools, we gen- 

rated 24 2D images with 6 poses and 4 illumination varia- 

ions for CADCars. These 2D data are clustered into four su- 

er categories, i.e., minibus, sedan, sports and SUV, and are fur- 

her divided into 6 finer-grained categories for each super one 

ased on pose annotations, which defines a three-level hierar- 

hical structure. On ShapeNet, 12 2D images with pose variation 

re obtained for each 3D model. One three-level category-pose 

ierarchical structure named ShapeNet-P (i.e., Furniture → Fine- 

rained Categories → Pose Variations) and another three-level hi- 

rarchical structure named ShapeNet-C (i.e., Furniture → Common 

ategories → Fine-grained Categories) are defined. The ratio of 

rain/test split is 4:1 by random divisions. 

.1. Disentangling results 

As introduced in Section 3.3 , the recombined features at each 

evel may come from different input objects, and the appearance of 

enerated image should reflect the semantic information encoded 

n each level. Therefore, in this part, we first replace one or mul- 

iple levels of disentangled features of a source image with those 

f a target image, and then observe the visual changes of gener- 

ted image to validate the semantic consistence with pre-defined 

ierarchies. 

Figs. 5 –7 show such semantic translation results. It is observed 

hat different level of features perform their own duties, i.e., they 

arry just enough information to control the variations at that level 

e.g., gender, smile and hair color from the second to leaf levels on 

elebA we specially predefined), but would not involve more infor- 

ation that should belong to other levels. For instance, in Fig. 5 as 

e replace features of an image at any one, two or all levels with

hose of another image, the semantics would be changed corre- 

pondingly. Apart from expected disentanglement of unique fea- 

ures { R l } L l=2 
, the common feature F 1 also encodes information that 

s not discriminative among its offspring categories but is neces- 
7 
ary to construct the object (e.g., the identity, pose and even the 

ackground information of a face image). In Figs. 6 and 7 , the dis-

ntanglement becomes tougher to some extent, as the variations 

t some levels are categorical such as the semantics of being a 

UV at R 2 level on CADCars, the difference between the trouser 

nd dress at R 3 level on Fashion-MNIST). Nevertheless, on CADCars 

nd ShapeNet-P, our HDN can still accurately capture such seman- 

ics at each level, i.e., categorical difference at R 2 level and pose 

ariation at R 3 level. On Fashion-MNIST and ShapeNet-C, the se- 

antic uniquenesses at the second and third levels are coarse and 

ne-grained categorical differences respectively (e.g., table vs. sofa, 

nd billiards vs. worktable). We can find that from R 2 to R 2 + R 3 , 

he appearances of source images are changed almost consistent 

ith the hierarchy structure. 

To give a more intuitive feeling about the hierarchical unique- 

ess of such level-wise features, we investigate the discrim- 

nabilites of them on CelebA via the popular tSNE tool [62] . As 

hown in Fig. 8 , with only the common feature F 1 , samples are 

ixed together. When progressively aggregated with features at 

eeper levels R l , samples are better separated and almost con- 

istent with the hierarchical structure, which further verifies our 

ethod has successfully disentangled the hierarchical semantics. 

Apart from the direct level-wise feature exchange, we also show 

hat one can transform the source image smoothly by linear in- 

erpolation (with 5 equally spaced interpolation coefficients from 

.1 to 0.9) of disentangled features between the source and target. 

uch examples are shown in Fig. 9 . We can see that the genders,

xpressions, hair colors and their combinations on the source im- 

ges (first columns in each case) can be changed smoothly towards 

hose on the targets (last columns of each case). Learning a smooth 

eature space with continuous variations is a significant issue for 

epresentation learning, which can ensure the generalization abil- 

ty for unseen similar objects. We have made a further investiga- 

ion of such task in Section 5.2 . 

Finally, a quantitative evaluation of these results is conducted. 

pecifically, we use the learned hierarchical classifier H to evalu- 

te whether hierarchical semantics are correctly disentangled, re- 

ombined and finally decoded into the generated images shown in 

igs. 5–7 . To ensure H is reliable, the accuracy of classifications at 

ach level on real test images is given as a reference. Table 1 gives

he evaluation results. Firstly, it can be seen that the semantics 

f generated images by changing different levels are recognized 
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Fig. 6. Semantic translation results of the source images controlled by hierarchically disentangled features of the targets on CADCars(a) and Fashion-MNIST (b). On these 

hierarchical data, only the leaf-level R 3 of CADCars has describable ground truth (i.e., pose variation), other levels are complex categorical variation (e.g., the semantics of 

being a SUV at R 2 level on CADCars, the difference between the trouser and dress at R 3 level on Fashion-MNIST). 

Fig. 7. Semantic translation results of the source images controlled by hierarchically disentangled features of the targets on ShapeNet-C (a) and ShapeNet-P (b). On these 

hierarchical data, only the leaf-level R 3 of ShapeNet-P has describable ground truth (i.e., pose variation), other levels are complex categorical variation (e.g., additional 

semantics of being a billiard table compared with being only a table). 

Fig. 8. 2D tSNE of disentangled F l on test set of CelebA at different levels. For easy understanding, M and F mean male and female, S and N mean Smile and Neural, and Bl, 

G and Br mean Black, Golden and Brown hair, respectively. 

8 
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Fig. 9. Interpolations of disentangled R l between the source (first columns) and target (last columns) images (other levels unchanged on the source images). Ground truths 

of R 2 , R 3 , R 4 are gender, smile and hair color variations, respectively. 

Table 1 

Accuracy of hierarchical classifications for real images on test set and generated (Gen.) images using randomly recombined hierarchical 

features. Lv2 denotes the second level. CADCars-R denotes the reversed level order of Lv2 and Lv3 compared with CADCars. 

CelebA Fashion-MNIST CADCars CADCars-R ShapeNet-C ShapeNet-P 

Level Test Gen. Test Gen. Test Gen. Test Gen. Test Gen. Test Gen. 

Lv2 0.9570 0.9387 0.9629 0.9779 0.9781 0.9792 0.9798 0.9956 0.9941 0.9941 0.9323 0.8863 

Lv3 0.9232 0.9103 0.9336 0.8464 0.9798 0.9670 0.9798 0.9219 0.9844 0.8865 0.9190 0.8413 

Lv4 0.8932 0.8799 – – – – – – – – – –
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Fig. 10. Semantic translation results of compared cGANs and HDN on CelebA. 

R 2 , R 3 , R 4 are gender, smile and hair color, respectively. StarGAN only needs binary 

attribute vectors as conditions to generate images, and the target image in its row 

is not used. ELEGANT-2 is trained with gender and smile attributes. When testing, 

the ELEGANT models can only change one attribute guided by the target each time. 
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orrectly. Secondly, the deeper of the level, the more difficult of 

he semantic change in general, since the criteria for distinguish- 

ng one category from others in the deeper level would become 

ore and more fine-grained. Finally, it becomes difficult to transfer 

he unique features and to generate distinguishable images when 

hat information is difficult to be described and disentangled at the 

eaf-level on Fashion-MNIST and ShapeNet-C (e.g., what it would 

ook like by transferring the semantic difference between a billiard 

nd a tennis to an L-couch ), leading to poor classification accuracy 

t those levels. 

.2. Quality comparison of generated images 

In this subsection, we evaluate the quality of generated images 

ontrolled by recombined hierarchical features on CelebA. Since 

he disentangling paradigm of our method is similar to the image- 

o-image translation task, we further compare one of such kinds 

f cGAN-based works, i.e. StarGAN [63] which has been a popular 

ramework for the multi-attribute translation task. Besides, we also 

ompare a specific face attribute disentanglement work named EL- 

GANT [32] 3 We trained ELEGANT-2 for disentangling gender and 

mile, and ELEGANT-5 for all the 5 attributes we used in our HDN. 

e follow the hyper-parameters settings on CelebA in their pub- 

icly released codes. We use the Inception Score (IS) [64] and 

rchet Inception Distance (FID) [65] to measure fidelity of im- 

ges, and leverage the Learned Perceptual Image Patch Similarity 

LPIPS) [66] to measure the diversity of generated visual modes to 

etect mode collapse. 

In Table 2 , it is observed HDN achieves comparable and even 

lightly better image fidelity compared with the state-of-the-art 

ranslation method StarGAN, which demonstrates that HDN can 

ot only extract primitives of objects for discriminative tasks but 

lso be applied to such graphical applications. Besides, we find 

hat IS and LPIPS are sensitive to artifacts while FID is more stable, 

hich can be validated by the qualitative results in the following. 

Figure 10 compares the qualitative results. Our method per- 

orms comparable with StarGAN and better than ELEGANT. ELE- 
3 This method is good at disentangling two attributes in a model and changing 

ne attribute with another fixed given a reference image each time. The perfor- 

ance would become unstable for more than two attributes, about which we have 

iscussed with its authors. 

p

m

c

l

s

9 
ANT is designed for disentangling face attributes, the results of 

hich for few attributes (no more than two as suggested by the 

uthors) look good but would become much poor when multiple 

actors need to be dealt with, while ours can simultaneously han- 

le multiple factors at different levels. 

.3. Ablation study 

In this subsection, we firstly make a justification of several 

hoices made in our method, including the usage of local brother 

ategories for classification learning, and different loss terms in 

q. (7) on the CelebA dataset. Specifically, we replace the local 

lassification loss (i.e., multiple Softmax cross-entropy loss items 

re respectively computed on the categories which belong to one 

ame parent category) with the global one (i.e., only one Soft- 

ax cross-entropy loss is computed on all categories) at each 

evel to verify the effectiveness of local discriminability for disen- 

angling level-wise unique features. For each loss term, we sim- 

ly drop it and keep others unchanged during training. Further- 

ore, we investigate the relative loss weights of the hierarchi- 

al classification loss term that ensures the discriminability of 

earned features w.r.t the adversarial loss term that ensures the 

ynthesis image quality. Specifically, we fix the weight of J as 
GAN 
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Table 2 

Comparisons of image quality of baselines, state-of-the-arts and the full HDN. IS and FID measure the fidelity, and LPIPS measures 

the diversity of images. For IS and LPIPS, higher is better. For FID, lower is better. w/o GAN, w/o cls, w/o fea, w/o img, and global 

denote HDN trained without the adversarial, the hierarchical classification, the feature reconstruction and image reconstruction loss 

terms, and with global classification loss, respectively. Real means the result of real images on test set. 

w/o GAN w/o cls w/o fea w/o img global StarGAN ELEGANT-2 ELEGANT-5 HDN-full Real 

IS 2.61 2.87 2.75 2.42 3.34 2.59 2.84 3.63 2.70 2.87 

FID 86.24 14.37 20.70 28.87 77.35 20.19 25.78 51.6 20.07 0 

LPIPS 0.439 0.412 0.411 0.408 0.430 0.409 0.404 0.499 0.408 0.416 

Table 3 

Accuracy of hierarchical classifications for real and generated images of baselines and our 

full method at different semantic levels on CelebA. 

Level w/o GAN w/o cls w/o fea w/o img global HDN-full Real 

Lv2 0.9607 0.7385 0.9600 0.9434 0.8246 0.9387 0.9570 

Lv3 0.9271 0.7224 0.9020 0.9068 0.7791 0.9103 0.9232 

Lv4 0.8893 0.7450 0.8661 0.8662 0.8587 0.8799 0.8932 

Table 4 

Accuracy of hierarchical classifications at different levels for generated images in 

different relative weight settings of the classification loss w.r.t the adversarial loss 

on CelebA. 

Level 0 0.001 0.01 0.1 1.0 10.0 100.0 

Lv2 0.7385 0.8406 0.9309 0.9697 0.9387 0.9643 0.9614 

Lv3 0.7224 0.7163 0.8187 0.8873 0.9103 0.9151 0.9203 

Lv4 0.7450 0.7990 0.8287 0.8438 0.8799 0.8638 0.8675 

Fig. 11. Semantic translation results of baselines and HDN-full on CelebA. Different 

columns denote results of using F 1 , { R l } L l=2 
or their combinations disentangled from 

the target images to replace the corresponding levels of the sources. Ground truths 

of R 2 , R 3 , R 4 are gender, smile and hair color variations, respectively. 
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.0 for reference, and change the weight of J cls in the range of 

 0 . 001 , 0 . 01 , 0 . 1 , 1 . 0 , 10 . 0 , 100 . 0 } . 
To evaluate the results, we firstly compare these baselines in 

erms of the classification performance in Tables 3 and 4 , and the 

isual quality in Table 2, Figs. 11 and 13 for the generated images 

ontrolled by disentangled features. From Table 3 , we can see that 

DN-full overall performs better. Replacing the local classification 

oss with the global one at non-root levels would heavily do harm 

o the goal of hierarchical disentanglement, as the global one takes 

ll categories at that level into consideration which needs the in- 

ormation at both parent and current levels, while we aim to sepa- 

ate such information (i.e., the unique feature at current level com- 

ared to its parent), leading to conflicting objectives. Such conflict 

eads to poor generation quality shown in Fig. 11 . Without the lo- 
10 
al classification, only changing features of one level results in am- 

iguous generations (the fifth row “global” in Fig. 11 ), which can 

lso be reflected from the quantitative evaluation of image quality 

n Table 2 (high FID). As for the reconstruction losses, they mainly 

tabilize the adversarial training. Without them, the quality of gen- 

rated images would decrease to some extent. Besides, the feature 

econstruction loss can boost the disentangling degree of features. 

s the 2D tSNE results in Fig. 12 demonstrates, without such loss, 

he intra-class compactness and inter-class discriminability of sam- 

les in the embedding space become poor. 

As for the other two core losses, without the adversarial loss 

i.e., w/o GAN), the quality of generated images in Table 2 is quite 

oor (high FID), even though the hierarchical classification accu- 

acy in Table 3 is very high. This means that the decoder gener- 

tes fake images with artifacts to cheat the classifier as shown in 

ig. 11 , demonstrating the necessary of adversarial loss to ensure 

he synthesis task. By contrast, without the classification loss (i.e., 

/o cls), the decoder may generate images with high quality (very 

ow FID) in Table 2 , but without desired target semantics (poor 

lassification accuracy), as shown in Table 3 and Fig. 11 . Lastly, 

hanging the relative loss weights of the classification loss w.r.t the 

dversarial loss from small to large values, the overall classification 

ccuracy in Table 4 will be improved at the price of generated im- 

ge quality decreasing in Fig. 13 . As an empirical conclusion, set- 

ing the weight of the classification loss term as 1.0 seems to be 

he best choice to balance these two tasks. 

In the last part of this subsection, we make a study of the im- 

act of level order when disigning the hierarchical structure. As we 

ave discussed in the Datasets part in Section 4 , the hierarchical 

tructures are designed mainly based on the perception procedures 

y human. For the CADCars dataset, at the root level, we regards 

ll images as the car . Then at the next level, we usually distin- 

uish them based on the car type in practice, while the different 

oses cased by imaging angle variations in the 3D model (usually 

eferred to “intra-class variations”) for each car type are further re- 

arded as the finer-grained sub-categories. We can also exchange 

he order of these levels, as it indeed does not have the ground 

ruth. We conduct such order reverse experiments, i.e., using the 

ar pose firstly and car type secondly to classify car images in the 

ierarchical structure. We compare the hierarchical classification 

ccuracy results (i.e., the CADCars-R in Table 1 ) and the semantic 

ranslation results shown in Fig. 14 . In terms of classification ac- 

uracy, the average performance on real test images is quite close 

efore and after reversing level order (0.9789 vs. 0.9798). The av- 

rage accuracy on generated images does not have obvious differ- 

nce (0.9731 vs. 0.9587). However, the results of generated images 

t each level before and after reversing the level order have some 
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Fig. 12. 2D tSNE of disentangled F l by HDN without reconstruction feature loss on CelebA at different levels. For easy understanding, M and F mean male and female, S and 

N mean Smile and Neural, and Bl, G and Br mean Black, Golden and Brown hair, respectively. 
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Fig. 13. FID of generated images on CelebA with different relative weight settings 

of the hierarchical classification loss w.r.t the adversarial loss. 

Fig. 14. Semantic translation results of the source images controlled by hierarchi- 

cally disentangled features of the targets on the annotation-reversed CADCars, i.e., 

on this hierarchical structure, R 2 denotes pose variation, while R 3 denotes complex 

categorical variation. 
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11 
ifference (Lv2: 0.9792 vs. 0.9956, Lv3: 0.9670 vs. 0.9219). From 

he qualitative semantic translation comparisons in Figs. 6 (a) and 

4 , we can draw similar observations, i.e., the generated images 

onditioned on the features involving R 3 may have relatively poor 

uality. In a word, the order of the hierarchical levels may have 

 few impacts on the final results. When designing the hierarchi- 

al structure, following the perception procedures of human (i.e., 

oarse categorical change first, and then local attribute change) is 

etter for our HDN. 

. More application scenarios 

.1. Application to image retrieval 

One of the objectives of learned representations is to be ap- 

lied in real-world applications. Content-based image retrieval is 

ne of the most popular applications. Usually the retrieval objec- 

ives of users are not always clear given the query image, due to 

he tangled information of objects at different hierarchical levels., 

.g., search the images with same category or just some same at- 

ributes and which attributes? In this part, we conduct retrieval at 

ifferent levels on the predefined hierarchical CelebA data intro- 

uced in Fig. 3 (a). We compare three deep hashing methods con- 

idering their space-time efficiency and competitive performance, 

.e., DSH [67] , HashNet [68] and SSDH [69] , and the two strong 

re-trained GAN methods in Section 4.2 , i.e., StarGAN [63] and EL- 

GANT [32] . The backbones of hashing methods are same with the 

ottom branch of encoder E of HDN and pretrained on CASIA Web- 

ace dataset [70] . At the l-th level, a hashing model with bit-length 

s same as the dimension of the concatenation of { R l } l is trained 
2 
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Table 5 

mAP results of retrieval for compared methods at different semantic levels. Methods with postfix of “-S” are trained with one single model 

supervised at the leaf-level annotations. 

Level DSH DSH-S HashNet HashNet-S SSDH SSDH-S StarGAN ELEGANT-2 ELEGANT-5 HDN HDN-B 

Lv2 0.9523 0.7619 0.9483 0.8187 0.9593 0.8120 0.7474 0.9217 0.6490 0.9571 0.9747 

Lv3 0.8010 0.5564 0.8374 0.6338 0.8445 0.6687 0.5231 0.8986 0.5659 0.8589 0.9006 

Lv4 0.6461 0.6461 0.6336 0.6336 0.7052 0.7052 0.5016 0.4256 0.7889 0.6941 0.7919 

Fig. 15. Top-5 returned images of two retrieval cases using different parts of fea- 

tures (i.e. different R l of HDN, and corresponding dimensions of bit parts of SSDH 

trained with leaf-level supervisions). Green and red boxes are correct and false sam- 

ples respectively, judged by the hierarchical annotations (i.e., gender, smile and hair 

color). (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 
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Fig. 16. Typical samples of unseen data on CelebA (bald and gray hair), ShapeNet-C 

(kinds of novel tables and sofas) and ShapeNet-P (more unseen poses). Large dif- 

ferences compared with seen hierarchical data in Figs. 3 (a) and 4 (b) can be found 

here. 
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Table 6 

Hierarchical prediction performance for seen test set and unseen leaf-level cat- 

egories. Lv2 or Lv3 included is the level where seen and unseen objects share 

the same semantics, and the entropy is tested at the leaf-level where unseen 

objects have novel semantic annotations. 

CelebA ShapeNet-C ShapeNet-P 

Metric Seen Unseen Seen Unseen Seen Unseen 

Lv2 Acc. 0.9441 0.9650 1.0 0.7019 0.8563 0.7727 

Lv3 Acc. 0.8520 0.9450 – – – –

Entropy 0.1779 0.3561 0.1204 0.4015 0.1567 0.4913 
sing the semantic annotations at that level. As for StarGAN and 

LEGANT, the latent features before the last layer of discriminator 

re used as the representations of samples. To make a fair compar- 

son with hashing methods, we also binarize R l via Sigmoid activa- 

ion during training, which we named as HDN-B. The test set are 

sed as queries to retrieve the training set. 

Table 5 gives the mean Average Precision (mAP) of retrieval 

valuations at different levels. First, our method achieves the best 

erformance, though we do not impose specific metric learning ob- 

ectives on features. Besides, the compared ELEGANT variants are 

ometimes better than StarGAN, but are not stable, as it cannot 

ell deal with multiple semantic concepts (more than two) when 

onducting the semantic features combination, limited by its flat 

isentangling manner. Second, HDN is more efficient since it only 

ses one model to handle different levels of retrieval needs ow- 

ng to the disentanglement, while hashing methods have to train 

 model at each level. We also tried to use only one single model 

rained at the leaf-level, where it tangles all levels’ information in 

he annotations, to evaluate at high levels (methods with postfix 

f “-S”), but the results are inferior to those independently trained 

or each level. Third, HDN-B is better than HDN, which mainly due 

o the increased non-linear ability of features. Finally, the retrieval 

f HDN is more interpretable. As shown in Fig. 15 , with different 

arts of features (i.e., different R l of our HDN), the returned images 

atisfy different semantic requirements, while for general method 

ike SSDH one can not interpret the meanings of different code 

arts, since the returned results do not present a certain seman- 

ic consistently. 

.2. Unseen category prediction and semantic edit 

Discovery of unseen categories is a challenging task for deep 

lassifier models, which has high requirements for the generaliza- 

ion ability of learned representations. As our HDN learns features 
12 
t different hierarchical levels, it can obtain sequential category 

redictions for an object. Therefore, if unseen objects (e.g., a new 

reed of dog) share some semantic levels with seen ones, we can 

till obtain the right predictions at those levels (i.e., animal and 

og), and the predictions at seen categories levels where unseen 

bjects have their own unique semantics should be confused (i.e., 

nknown about the fine-grained dog breed). To this end, we use 

 linear hierarchical classifier trained with the level-wise disen- 

angled features to evaluate the classification accuracy for levels 

here seen and unseen objects share the same categories, and to 

ompute the information entropy of predictions for the level where 

nseen objects have their unique categorical labels. We test HDN 

n certain unseen leaf-level categories, i.e., bald and gray hair on 

elebA, kinds of unseen tables and sofas on ShapeNet-C, and ob- 

ects with other poses on ShapeNet-P, as shown in Fig. 16 . 
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Fig. 17. Semantic translation results between seen and unseen (i.e., bald and gray 

hair of CelebA, kinds of novel tables and sofas of ShapeNet-C and objects with new 

poses of ShapeNet-P) objects. Here we replace all levels of R l of the source images 

with those of the targets, which is equivalent to the right most case in Fig. 5 . 
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Table 6 shows the quantitative results. Two conclusions can 

e reached. 1). At levels where seen and unseen objects share 

ame semantics (i.e., levels of gender and smile on CelebA, level 

f Sofa/Table on ShapeNet-C, and level of Loveseat/Club chair/Work 

able/Billiards on ShapeNet-P), most objects can be correctly clas- 

ified. 2). At the leaf-level, unseen objects have the unique unseen 

eatures, leading to the prediction entropy increase obviously com- 

ared with that of seen objects. Besides, it is found that the un- 

een objects are more likely to be classified as appearance similar 

een categories at leaf-level. For instance, about 30% and 56% bald 

aces are recognized as black and golden hair respectively, fifty- 

fty leather couches are predicted as loveseat and L-couch respec- 

ively, and 44% and 50% of the frontal-pose sofa/table are classified 

s the right 30 ◦ offset of frontal and left 30 ◦ offset of frontal. The

emantic translations in Fig. 17 between seen and unseen images 

lso verify such observations. Specifically, the semantics of non-leaf 

evels can be extracted and transferred as usual, but the unseen 

nique features are not. For instance, unseen bald attribute may be 

isentangled as golden or black hair due to the skin color. The ma- 

erial of unseen leather couch is ignored on ShapeNet-C, since the 

rained model focuses more on shape information to distinguish 

een objects rather than material information during training. The 

ranslations of tables to unseen frontal pose are also confused and 

issimilar with any seen pose as shown in the cases of ShapeNet-P. 

hrough this study, we believe that disentangling visual primitives 

f objects as learned knowledge is one promising solutions to the 

bility of open-world recognition. 

. Discussions 

The proposed method in this paper builds on the framework 

f conditional generative adversarial network and utilize the sim- 

le hierarchical recombination scheme to learn disentangled se- 

antic representations. It can achieve satisfactory results on rela- 

ively simple image data with clean background and clear semantic 

ifferences between levels. However, it has some limitations and 

eeds more effort s to improve. Here we try to make further discus- 

ions on such limitations and expect to inspire more explorations 

n this area. 

Firstly , our HDN does not perform well to handle images with 

omplicated background and heavily tangled semantic information, 

uch as on the ImageNet dataset shown in the supplementary ma- 

erials. On the one hand, our method does not consider the ge- 

metrical relationship between semantics when recombining the 
13
isentangled features. However, given a set of semantic informa- 

ion (e.g. attributes), different geometrical combinations could lead 

o different visual perceptions. Moreover, some semantic informa- 

ion maybe intractable to be disentangled in the 2D space. On the 

ther hand, currently the capacity of cGAN frameworks is limited 

o deal with large scale of data distributions, the training of which 

s not very stable. It is suggested that the usage of 3D genera- 

ive models which can disentangle the intractable semantics in 2D 

pace, or turning to recently proposed more advanced generative 

rameworks like the diffusion model [71] would boost the perfor- 

ance of our method significantly. Secondly , the supervised sig- 

als in current HDN depend on the human-defined hierarchical 

rior, which sometimes is ad-hoc. Besides, the generalization per- 

ormance across datasets shown in the supplementary materials is 

ot very well right now. In the future, one possible way to over- 

ome these limitations is to construct an automatic self-supervised 

epresentation learning system, where the hierarchical structure is 

reated based on the properties within data or predefined rules, 

uch as coarse-to-fine clustering in a deep feature space. By do- 

ng so, when novel data comes, the whole system can be updated 

utomatically. 

. Conclusions 

In this paper, we propose the hierarchical disentangling net- 

ork (HDN) which exploits the natural hierarchical characteristics 

mong categories to learn the object representations in a coarse- 

o-fine manner (i.e., level-wise). Our model achieves promising dis- 

ntangling results on several popular object image datasets. We 

lso show the applications of such disentangled features on image- 

o-image translation, content-based image retrieval and even un- 

een objects prediction. Our current work can be viewed as an 

arly attempt towards the long goal of disentangled representation 

earning, and it still has some limitations as discussed in Section 6 , 

here we have introduced some promising future directions to 

mprove and push the research progress in this area, such as the 

tudy of diffusion models to fit complicated data distributions, 

everaging the 3D geometrical knowledge on hierarchical disentan- 

led representation learning to avoid the ill-conditioned issues in 

he 2D space, and the introduction of self-supervised learning to 

utomatically construct hierarchical prior, etc. 
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